2024年
1 Wang, Y. et al. Highly Oriented FAPbI3 via 2D Ruddlesden Popper Perovskite Template Growth. Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202401721
2 Wang, H. et al. Controlled dion-jacobson low-dimensional surface phase enables highly efficient and stable perovskite solar cells. Nano Energy 128, 109875 (2024). https://doi.org/10.1016/j.nanoen.2024.109875
3 Sun, H. et al. Optoelectronic synapses based on a triple cation perovskite and Al/MoO<sub>3</sub> interface for neuromorphic information processing. Nanoscale Advances 6, 559-569 (2024). https://doi.org/10.1039/d3na00677h
4 Shi, Z. et al. Room Temperature Crystallized Phase‐Pure α‐FAPbI3 Perovskite with In‐Situ Grain‐Boundary Passivation. Advanced Science (2024). https://doi.org/10.1002/advs.202400275
5 Liu, K. et al. Lead (Pb) Management in the Entire Life Cycle of Highly Efficient and Stable Perovskite Solar Cells. Energy & Environmental Science (2024). https://doi.org/10.1039/d4ee01829j
6 Jamil, S. et al. Sb-Doped Biphasic P2/O3-Type Mn-Rich Layered Oxide Cathode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces 16, 14669-14679 (2024). https://doi.org/10.1021/acsami.3c15667
7 He, F. et al. Hydrophobic Electron‐Transport Layer for Efficient Tin‐Based Perovskite Solar Cells. Advanced Functional Materials (2024). https://doi.org/10.1002/adfm.202405611
8 Cai, Y. et al. In-plane ferroelectric-reconfigured interface towards dual-modal intelligent vision. Next Nanotechnology 5, 100052 (2024). https://doi.org/10.1016/j.nxnano.2024.100052
9 Behrouznejad, F., Zhan, Y. & Taghavinia, N. UV Laser Scribing for Perovskite Solar Modules Fabrication, Pros, and Cons. IEEE Journal of Photovoltaics, 1-10 (2024). https://doi.org/10.1109/jphotov.2024.3396515
10 Behrouznejad, F. et al. Modification of copper-based chalcogenide nanocrystals' interconnections for efficient hole transportation in Perovskite solar cell. Materials Research Bulletin 178, 112892 (2024). https://doi.org/10.1016/j.materresbull.2024.112892
2023年
11 Zhang, X. et al. Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules. ACS Energy Letters 8, 2532-2542 (2023). https://doi.org/10.1021/acsenergylett.3c00697
12 Zhang, X. et al. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 46803-46811 (2023). https://doi.org/10.1021/acsami.3c08119
13 Xu, X. et al. Tunable Fabrication of MAPbX<sub>3</sub> Triangular‐Micro‐Wires Array for Constructing High Sensitivity Photodetector. Advanced Materials Technologies 8 (2023). https://doi.org/10.1002/admt.202300946
14 Wang, Y. et al. Intermediate Phase Free α‐FAPbI<sub>3</sub> Perovskite via Green Solvent Assisted Perovskite Single Crystal Redissolution Strategy. Advanced Materials 35 (2023). https://doi.org/10.1002/adma.202302298
15 Wang, H. et al. Green Solvent Polishing Enables Highly Efficient Quasi-2D Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 36447-36456 (2023). https://doi.org/10.1021/acsami.3c08182
16 Tan, H., Du, L., Yang, F., Chu, W. & Zhan, Y. Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives [Invited]. Chin. Opt. Lett. 21, 110007 (2023).
17 Rafique, S. et al. Ultralow Thermal Conductivity Achieved by All Carbon Nanocomposites for Thermoelectric Applications. Advanced Electronic Materials 9 (2023). https://doi.org/10.1002/aelm.202300023
18 Pan, Y. et al. An Ultrasensitive Sandwiched Heterostructure Planar Photodetector with Gradient Quasi‐2D Perovskite. Advanced Electronic Materials, 2201028 (2023). https://doi.org/10.1002/aelm.202201028
19 Liu, K. et al. Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033-1050 (2023). https://doi.org/10.1016/j.joule.2023.03.019
20 Liu, K. et al. In Situ Cross‐Linking Strategy to Enable Highly Stable Perovskite Solar Cells. Small 19 (2023). https://doi.org/10.1002/smll.202304189
21 Li, X. et al. Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells. Nano Energy 114, 108619 (2023). https://doi.org/10.1016/j.nanoen.2023.108619
22 Li, T. et al. Alleviating the Crystallization Dynamics and Suppressing the Oxidation Process for Tin‐Based Perovskite Solar Cells with Fill Factors Exceeding 80 Percent. Advanced Functional Materials (2023). https://doi.org/10.1002/adfm.202308457
23 jiang, C. et al. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations. Ultrasonics 135, 107124 (2023). https://doi.org/10.1016/j.ultras.2023.107124
24 Hatamvand, M. et al. The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 112076 (2023). https://doi.org/10.1016/j.vacuum.2023.112076
25 Feng, J. et al. An Energy-Efficient Flexible Multi-Modal Wireless Sweat Sensing System Based on Laser Induced Graphene. Sensors 23, 4818 (2023). https://doi.org/10.3390/s23104818
26 Deng, L. et al. Stabilizing Bottom Side of Perovskite via Preburying Cesium Formate toward Efficient and Stable Solar Cells. Advanced Functional Materials 33 (2023). https://doi.org/10.1002/adfm.202303742
27 Cai, Y. et al. In-situ artificial retina with all-in-one reconfigurable photomemristor networks. npj Flexible Electronics 7 (2023). https://doi.org/10.1038/s41528-023-00262-3
28 Cai, X. et al. Discovery of All-Inorganic Lead-Free Perovskites with High Photovoltaic Performance via Ensemble Machine Learning. Materials Horizons (2023). https://doi.org/10.1039/d3mh00967j
29 Behrouznejad, F. et al. The fingerprint of charge transport mechanisms on the incident photon-to-current conversion efficiency spectra of perovskite solar cells. Solar Energy Materials and Solar Cells 253, 112234 (2023). https://doi.org/10.1016/j.solmat.2023.112234
30 Alias, N. et al. Air-Processable Perovskite Solar Cells by Hexamine Molecule Phase Stabilization. ACS Omega 8, 18874-18881 (2023). https://doi.org/10.1021/acsomega.3c01236
31 Ahmed, W. et al. ZnO intercalated into graphene oxide based 2-D binary composite for improved thermal properties using as a potential nanofluid. Journal of Molecular Liquids 391, 123426 (2023). https://doi.org/10.1016/j.molliq.2023.123426
32 Ahmed, W. et al. Preparation, applications, stability and improved thermal characteristics of sonochemically synthesized nanosuspension using varying heat exchangers, a Review. Journal of Molecular Liquids 387, 122665 (2023). https://doi.org/10.1016/j.molliq.2023.122665
2022年
33 Zhang, X. et al. An Integrated Bulk and Surface Modification Strategy for Gas‐Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. Solar RRL, 2200053 (2022). https://doi.org/10.1002/solr.202200053
34 Wang, Y. et al. Stabilizing α-phase FAPbI 3 solar cells. Journal of Semiconductors 43, 040202-040202-040203 (2022).
35 Wang, H. et al. Band Alignment Boosts over 17% Efficiency Quasi-2D Perovskite Solar Cells via Bottom-Side Phase Manipulation. ACS Energy Letters 7, 3187-3196 (2022). https://doi.org/10.1021/acsenergylett.2c01453
36 Usman, M. et al. Facile synthesis of ironnickelcobalt ternary oxide (FNCO) mesoporous nanowires as electrode material for supercapacitor application. Journal of Materiomics 8, 221-228 (2022).
37 Tangyao, S., Yiqiang, Z. & Lei, S. Time-resolved spectroscopy for the study of perovskite. Chinese Journal of Electronics 32, 1 (2022). https://doi.org/10.23919/cje.2022.00.064
38 Song, W. et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: a Study on the Effects of Volatile A-Cation Additives. ACS Applied Materials & Interfaces 14, 27922-27931 (2022). https://doi.org/10.1021/acsami.2c05241
39 Samanta, S. et al. Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in CuS. ChemNanoMat 8 (2022). https://doi.org/10.1002/cnma.202200238
40 Numan, A. et al. Advanced nanoengineered—customized point-of-care tools for prostate-specific antigen. Microchimica Acta 189 (2022). https://doi.org/10.1007/s00604-021-05127-y
41 Mehmood, S. et al. in Dye-Sensitized Solar Cells 103-136 (Elsevier, 2022).
42 Liu, F. et al. Highly Efficient and Stable Self‐Powered Mixed Tin‐Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology. Advanced Science 10, 2205879 (2022). https://doi.org/10.1002/advs.202205879
43 Liu, F. et al. New Lead-free Organic–Inorganic Hybrid Semiconductor Single Crystals for a UV–Vis–NIR Broadband Photodetector. ACS Applied Materials & Interfaces 14, 33850-33860 (2022). https://doi.org/10.1021/acsami.2c08116
44 Li, X. et al. Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry 67, 1-7 (2022). https://doi.org/10.1016/j.jechem.2021.09.021
45 Li, C., Rafique, S. & Zhan, Y. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. The Journal of Physical Chemistry Letters 13, 11610-11621 (2022). https://doi.org/10.1021/acs.jpclett.2c02983
46 Khan, Q. U., Begum, N., Khan, K., Rauf, M. & Zhan, Y. Novel Porphyrin–Perylene diimide for ultrafast high-performance resistive memory devices. Organic Electronics 103, 106453 (2022).
47 Jiang, C., Liu, C., Zhan, Y. & Ta, D. The Spectrum-Beamformer for Conventional B-Mode Ultrasound Imaging System: Principle, Validation, and Robustness. Ultrasonic Imaging, 01617346221085184 (2022).
48 Deng, L. et al. Strain Release and Defect Passivation in Formamidinium-Dominated Perovskite via a Novel in-Plane Thermal Gradient Assisted Crystallization Strategy. ACS Applied Materials & Interfaces 14, 52007-52016 (2022). https://doi.org/10.1021/acsami.2c16247
49 Cai, Y. et al. Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses. npj Flexible Electronics 6 (2022). https://doi.org/10.1038/s41528-022-00152-0
50 Cai, X. et al. Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science & Applications 11 (2022). https://doi.org/10.1038/s41377-022-00924-3
2021年
51 Zhang, H. et al. Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials 31 (2021). https://doi.org/10.1002/adfm.202100205
52 Zamanpour, F. et al. Fast Light-Cured TiO2 Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials 4, 7800-7810 (2021). https://doi.org/10.1021/acsaem.1c01168
53 Shahid, M. et al. Platinum doped titanium dioxide nanocomposite an efficient platform as anode material for methanol oxidation. Journal of Materials Research and Technology 15, 6551-6561 (2021). https://doi.org/10.1016/j.jmrt.2021.11.077
54 Sagadevan, S. et al. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews 10, 605-635 (2021). https://doi.org/10.1515/ntrev-2021-0043
55 Prathapani, S. & Zhan, Y. A Comprehensive Perspective on the Fabrication of CuGaSe2/Si Tandem Solar Cells. Energy Technology 9, 2100193 (2021). https://doi.org/10.1002/ente.202100193
56 Numan, A. et al. Rationally engineered nanosensors: A novel strategy for the detection of heavy metal ions in the environment. Journal of Hazardous Materials, 124493 (2021). https://doi.org/10.1016/j.jhazmat.2020.124493
57 Li, C. et al. Highly Luminescent and Patternable Block Copolymer Templated 3D Perovskite Films. Advanced Materials Technologies, 2001209 (2021). https://doi.org/10.1002/admt.202001209
58 Hu, Z. et al. A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing. Sensors and Actuators B: Chemical 346, 130462 (2021). https://doi.org/10.1016/j.snb.2021.130462
59 Ghavaminia, E. et al. Polyvinylcarbazole as an Efficient Interfacial Modifier for Low‐Cost Perovskite Solar Cells with CuInS2/Carbon Hole Collecting Electrode. Solar RRL (2021). https://doi.org/10.1002/solr.202100074
60 Chen, W. et al. Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. ACS Applied Electronic Materials 3, 5211-5218 (2021). https://doi.org/10.1021/acsaelm.1c00596
61 Cai, X. et al. Discovery of Lead‐Free Perovskites for High‐Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities. Advanced Science 9, 2103648 (2021). https://doi.org/10.1002/advs.202103648
62 Begum, S. et al. Investigation of Morphology, Crystallinity, Thermal stability, Piezoelectricity and Conductivity of PVDF nanocomposites reinforced with Epoxy Functionalized MWCNTs. Composites Science and Technology, 108841 (2021). https://doi.org/10.1016/j.compscitech.2021.108841
63 Alias, N. et al. Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS2 Layer Passivation of TiO2 Nanograss Electron Transport Layer. ACS Applied Materials & Interfaces 13, 3051-3061 (2021). https://doi.org/10.1021/acsami.0c20137
64 Ahmed, I. et al. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light: Science & Applications 10 (2021). https://doi.org/10.1038/s41377-021-00609-3
2020年
65 Yu, X. X. et al. Memory Devices via Unipolar Resistive Switching in Symmetric Organic-Inorganic Perovskite Nanoscale Heterolayers. Acs Applied Nano Materials 3, 11889-11896 (2020). https://doi.org/10.1021/acsanm.0c02457
66 Wang, H. et al. Extremely Low Dark Current MoS2 Photodetector via 2D Halide Perovskite as the Electron Reservoir. Advanced Optical Materials 8, 1901402 (2020). https://doi.org/10.1002/adom.201901402
67 Umar, A. A. et al. Enhancing the interfacial carrier dynamic in perovskite solar cells with an ultra-thin single-crystalline nanograss-like TiO2 electron transport layer. Journal of Materials Chemistry A 8, 13820-13831 (2020). https://doi.org/10.1039/d0ta03176c
68 Singh, S. et al. Low-potential immunosensor-based detection of the vascular growth factor 165 (VEGF(165)) using the nanocomposite platform of cobalt metal-organic framework. Rsc Advances 10, 27288-27296 (2020). https://doi.org/10.1039/d0ra03181j
69 Singh, S. et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J Hazard Mater 399, 123042 (2020). https://doi.org/10.1016/j.jhazmat.2020.123042
70 Shi, Z. J. et al. [(C8H17)(4)N](4)[SiW12O40] (TASiW-12)-Modified SnO(2)Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl 4, 2000406 (2020). https://doi.org/10.1002/solr.202000406
71 Shahid, M. M. et al. A glassy carbon electrode modified with tailored nanostructures of cobalt oxide for oxygen reduction reaction. International Journal of Hydrogen Energy 45, 18850-18858 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.122
72 Pan, Y. Y. et al. Detection range extended 2D Ruddlesden-Popper perovskite photodetectors. Journal of Materials Chemistry C 8, 3359-3366 (2020). https://doi.org/10.1039/c9tc06109f
73 Numan, A. et al. Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. Journal of Alloys and Compounds 819, 153019 (2020). https://doi.org/10.1016/j.jallcom.2019.153019
74 Malek, N. A. A. et al. Enhanced Charge Transfer in Atom Thick 2H–WS2 Nanosheets Electron Transport Layers of Perovskite Solar Cells. Solar RRL 4, 2000260 (2020). https://doi.org/10.1002/solr.202000260
75 Lu, H. Z. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells. Science 370, 74 eabb8985 (2020). https://doi.org/10.1126/science.abb8985
76 Hatamvand, M. et al. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 71, 104609 (2020). https://doi.org/10.1016/j.nanoen.2020.104609
77 Forouzandeh, M. et al. Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells. Journal of Power Sources 475, 228658 (2020). https://doi.org/10.1016/j.jpowsour.2020.228658
78 Behrouznejad, F. et al. Effective Carbon Composite Electrode for Low-Cost Perovskite Solar Cell with Inorganic CuIn0.75Ga0.25S2 Hole Transport Material. Solar RRL 4, 1900564 (2020). https://doi.org/10.1002/solr.201900564
79 Abd Malek, N. A. et al. Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells. Optical Materials 104, 109933 (2020). https://doi.org/10.1016/j.optmat.2020.109933