Faculty
XIAO Limin

Department of Optical Science and Engineering

Professional Title:Professor

Position:

Email:liminxiao@fudan.edu.cn

Visiting Address:

Tel:

Home Page:

Research Interests

All-fiber photonic devices and fiber-based optofluidic applications:

·         photonic crystal fibers devices

·         advanced optical fiber manufacturing technology

·         fiber-based optofluidics

·         fiber sensors

·         all-fiber devices and laser technology.


Academic Positions

Professional Positions

06/2015- Now     Professor, School of Information Science and Engineering, Fudan University


Awards

 1.      Dean’s Award for Research Excellence, School of Information Science and Engineering, Fudan University, 2019.

2.      Innovation Award, Sponsored by Nature Communications and International Optofluidic Organization, 2019.

3.      Gold Medal, Exposed hollow-core photonic crystal fibers, The 46th Geneva International Exhibition of Inventions, 2018.

4.      Young Scientist Award, sponsored by Springer and Lab-on-a-chip 2013.

 


Education and Working Experience

Education

11/2004 – 02/2008  Ph.D. in Electrical Engineering, The Hong Kong Polytechnic University

09/2001 – 07/2004  M.S. in Optical Engineering, Tsinghua University

09/1997 – 07/2001  B.S. in Measurement& Control Technology and Instrumentation, Wuhan University


Working Experience:

2011-2015     Research Fellow at Optoelectronics Research Centre, University of Southampton

2008-2011  Research Officer at Centre for Photonics and Photonic Materials, University of Bath







Teaching

Nobel Prize and Optics (for undergraduates)

Lecture Series on Laser Research, Academic English for Ph.D. (for graduates)


Publications

 

Chapter:

Ch.-L. Zhao, D. N. Wang, and L. M. Xiao, “Filling Technologies of Photonic Crystal Fibers and Their Applications,” Book Chapter in: Handbook of Optical Fibers, DOI: 10.1007/978-981-10-1477-2_13-1, Springer Singapore, Springer Nature Singapore Pte Ltd. 2018.

 

Selected Publications:

1.      R. W. Yu, Y. X. Chen, L. L. Shui, and L. M. Xiao*, “Hollow-core photonic crystal fiber gas sensing,” Sensors 20, 2996 (2020).

2.      C. Y. Yao, L. M. Xiao, S. F. Gao, Y. Y. Wang, P. Wang, R. F. Kan, W. Jin, and W. Ren*, “Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 μm,” Sensors and Actuators B: Chemical 303, 127238 (2020).

3.      C. Y. Yao, Q. Wang, Y. C. Lin, W. Jin, L. M. Xiao, S. F. Gao, Y. Y. Wang, P. Wang, and W. Ren*, “Photothermal CO detection in a hollow-core negative curvature fiber,” Optics Letters 44, 4048-4051 (2019).

4.      L. L. Li, and L. M. Xiao*, “Plasmonic nodeless hollow-core photonic crystal fibers for in-fiber polarizers,” IEEE/OSA Journal of Lightwave Technology 37, 5199-5210 (2019).

5.      L. L. Li, and L. M. Xiao*, “Second-order vector mode propagation in hollow-core antiresonant fibers,” Micromachines 10, 381 (2019).

6.      J. Y. Tan, R. W. Yu, and L. M. Xiao*, “Bessel-like beams generated via fiber-based polymer microtips,” Optics Letters 44, 1007-1010 (2019).

(Reported in the newsbreaks of Laser Focus World March 2019)

https://www.laserfocusworld.com/articles/print/volume-55/issue-03/newsbreaks/fiber-based-polymer-microtips-produce-bessel-like-beams.html

7.      Y. C. Ye, L. M. Xiao*, S. H. Dong, and A. C. Peacock, “Analysis of coupling losses for all-fiber integration of subwavelength core hybrid optical fibers,” IEEE Photonics Journal 10, 7104242 (2018).

8.      Y. Hao, L. M. Xiao*, and F. Benabid, “Optimized design of unsymmetrical gap nodeless hollow core fibers for optofluidic applications,” IEEE/OSA Journal of Lightwave Technology 36, 3162-3168 (2018).

9.      T. Qi*, Y. M. Jung, L. M. Xiao, J. Wang, S. L. Xiao, C. Lu, H. Y. Tam, and A. C. Peacock, “Programmable long-period grating in a liquid core optical fiber,” Optics Letters 41, 4763-4766 (2016).

10.   F. H. Suhailin, L. Shen, N. Healy, L. M. Xiao, M. Jones, T. Hawkins, J. Ballato, U. J. Gibson, and A. C. Peacock*, “Tapered polysilicon core fibers for nonlinear photonics,” Optics Letters 41, 1360-1363 (2016).

11.   L. M. Xiao*, N. V. Wheeler, N. Healy, and A. C. Peacock, “Integrated hollow-core fibers for nonlinear optofluidic applications,” Optics Express 21, 28751-28757 (2013).

(Selected by Virtual Journal for Biomedical Optics, Jan 2014)

12.   Z. G. Lian*, P. Horak, X. Feng, L. M. Xiao, K. Frampton, N. White, J. A. Tucknott, H. N. Rutt, D. N. Payne, W. Stewart, and W. H. Loh, “Nanomechanical Optical Fiber,” Optics Express 20, 29386-29394 (2012).

(Reported in the news of Research & Technology section of Photonics Spectra magazine, reported by Optics & Photonics news of Phys. Org, news release of OSA 2012 and Laser Focus World 2013, etc.)

http://www.laserfocusworld.com/articles/print/volume-49/issue-02/world-news/specialty-fibers--dual-core-fiber-has-nanomechanical-switching-p.html

http://www.photonics.com/Article.aspx?AID=52621

http://phys.org/news/2012-12-dynamic-dual-core-optical-fiber-routes.html

http://www.osa.org/about_osa/newsroom/newsreleases/2012/new_dynamic_dual-core_optical_fiber_enhances_data/

13.   M. Pang, L. M. Xiao, W. Jin, and A. Cerqueira, “Birefringence of Hybrid-PCF and its responses to strain and temperature,” IEEE/OSA Journal of Lightwave Technology 30, 1422-1432 (2012).

14.   M. D. W. Grogan, S. C. Heck, L. M. Xiao, R. England, S. A. Maier, and T. A. Birks*, “Control of nanoparticle aggregation in aerogel hosts,” Journal of Non-Crystalline Solids 358, 241-245 (2012).

15.   L. M. Xiao*, T. A. Birks, and W. H. Loh, “Hydrophobic photonic crystal fibers,” Optics Letters 36, 4662-4664 (2011).

16.   L. M. Xiao, and T. A. Birks*, “Optofluidic microchannels in aerogel,” Optics Letters 36, 3275-3277 (2011).

(Selected by Virtual Journal of Nanoscale Science & Technology, September, 2011)

17.   L. M. Xiao, and T. A. Birks*, “High finesse microfiber knot resonators made from double-ended tapered fibers,” Optics Letters 36,1098-1100 (2011).

18.   L. M. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks*, “Stable low-loss optical nanofibers embedded in hydrophobic aerogel,” Optics Express 19, 764-769 (2011).

19.   L. M. Xiao*, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Optics Letters 34, 2724-2726 (2009).

(Reported in Break News and included in Technology Review of 2009 of Laser Focus World)

    http://www.laserfocusworld.com/articles/2009/10/silica-aerogel-holds-tapered-fibers-for-sensing.html

http://www.laserfocusworld.com/articles/print/volume-45/issue-12/features/technology-review-2009-accelerated-ingenuity.html

20.   Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks*, “More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing,” Optics Letters 34, 2240-2242 (2009).

21.   Y. L. Hoo*, W. Jin, L. M. Xiao, J. Ju, and H. L. Ho, “Numerical study of refractive index sensing based on the anti-guide property of a depressed-index core photonic crystal fiber,” Sensors and Actuators B-Chemical 136, 26-31(2009).

22.   Y. Han, M. K. K. Oo, Y. N. Zhu, L. M. Xiao, M. S. Demokan, W. Jin, and H. Du, “Index-guiding liquid-core photonic crystal fiber for solution measurement using normal and surface-enhanced Raman Scattering,” Optical Engineering 47, 040502 (2008).

23.   Y. P. Wang, W. Jin, J. Ju, H. F. Xuan, H. L. Ho, L. M. Xiao and D. N. Wang, “Long period gratings in air-core photonic bandgap fibers,” Optics Express, 16, 2784-2790 (2008).

24.   C. L. Zhao*, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” IEEE Journal of Lightwave Technology 26, 220-227 (2008).

25.   L. M. Xiao*, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: Hybrid PCFs,” Optics Express 15, 15637-15647 (2007).

26.   L. M. Xiao*, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single mode fibers: micro-hole collapse effect,” IEEE Journal of Lightwave Technology 25, 3563-3574 (2007).

27.   C. L. Zhao*, M. S. Demokan, W. Jin, and L. M. Xiao, “A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber,” Optics Communications 276, 242-245 (2007).

28.   Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on long period fiber grating written on photonic crystal fiber,” Optics Letters 32,1035-1037 (2007).

(Reported in the news of Photonics Research section of Photonics Spectra magazine Jun 2007)

http://photonics.com/Article.aspx?AID=29823

29.   L. M. Xiao*, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single mode fibers by repeated arc discharges,” Optics Letters 32,115-117 (2007).

(Reported in the news of Technology World section of Photonics Spectra magazine Feb 2007)

http://photonics.com/Article.aspx?AID=28362

30.   Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Optics Letters 31, 3414-3416 (2006). (Reported in the news of Technology World section of Photonics Spectra magazine Jan 2007) 

http://photonics.com/Article.aspx?AID=27747

31.   L. M. Xiao*, W. Jin, M. S. Demokan, H. L. Ho, H. Y. Tam, J. Ju, and J. M. Yu, “Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers,” Optics Letters 31, 1791-1793 (2006).

(Selected by Virtual Journal of Nanoscale Science & Technology, June 19, 2006)

32.   L. M. Xiao*, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Optics Express 13, 9014-9022 (2005).

33.   L. M. Xiao*, P. Yan, M. L. Gong, W. L. Wei, and P. Ou, “An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss,” Optics Communications 230, 401-410 (2004).


Copyrights 2017 © The School of Information Science and Technology, Fudan University