[1]L. Wu, L. Yu, X.Y. Dai, F.Y. Ma, S.Y. Wang, M. Lu, J. Sun, Bulk Defect-Mediated Absorption Sub-Bandgap All-Silicon Photodetector with Low Dark Current Density at Ambient Temperatures, ACS Photonics, 10 (2023): 3674-3681. DOI:10.1021/acsphotonics.3c00768
[2]L.Q. Li, C.J. Yao, B.Y. Ding, N. Xu, J. Sun, J.D. Wu, Influence of metal covering with a Schottky or ohmic contact on the emission properties of ZnO nanorod arrays, J. Lumines., 257 (2023): 119729. DOI:10.1016/j.jlumin.2023.119729
[3]X.Y. Dai, L. Wu, L. Yu, Z.Y. Yu, F.Y. Ma, Y.C. Zhang, Y.R. Yang, J. Sun, M. Lu, Sub-bandgap near-infrared photovoltaic response in Au/Al2O3/n-Si metal–insulator–semiconductor structure by plasmon-enhanced internal photoemission, Discover Nano, 18 (2023): 33. DOI:10.1186/s11671-023-03818-4
[4]X.Y. Dai, L. Wu, K.X. Liu, F.Y. Ma, Y.R. Yang, L. Yu, J. Sun, M. Lu, A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film, Sensors, 23 (2023): 6184. DOI:10.3390/s23136184
[5]C.J. Yao, D. Zhang, L. Wu, N. Xu, J. Sun, J.D. Wu, Structure and optical properties of ZrxHf1-xO2 films deposited by pulsed laser co-ablation of Zr and Hf targets with the assistance of oxygen plasma, Ceram. Int., 48 (2022): 587-596. DOI:10.1016/j.ceramint.2021.09.137
[6]C.J. Yao, J.M. Lin, Y.P. Qu, K. Jiang, Z.G. Hu, L.Q. Li, N. Xu, J. Sun, J.D. Wu, WS2-decorated ZnO nanorods and enhanced ultraviolet emission, Mater. Lett., 306 (2022): 130880. DOI:10.1016/j.matlet.2021.130880
[7]C.J. Yao, L. Wu, H. Li, N. Xu, J. Sun, J.D. Wu, WS2 coating and Au nanoparticle decoration of ZnO nanorods for improving light-activated NO2 sensing, Appl. Surf. Sci., 584 (2022): 152508. DOI:10.1016/j.apsusc.2022.152508
[8]S. Li, Y.C. Zhang, C. Zhang, X.Y. Dai, Z.Y. Yu, F. Hu, J. Liu, J. Sun, M. Lu, High-pressure Ar passivation to enhance the photoluminescence of Si nanocrystals, Physica E: Low-Dimensional Systems and Nanostructures, 131 (2021): 114680. DOI:10.1016/j.physe.2021.114680
[9]L. Wu, F. Hu, C.J. Yao, B.Y. Ding, N. Xu, M. Lu, J. Sun, J.D. Wu, Annealing effects and infrared photoelectric response of β-FeSi2 on Si (100) substrate prepared by pulsed laser deposition, Vacuum, 188 (2021): 110183. DOI:10.1016/j.vacuum.2021.110183
[10]C.J. Yao, J.M. Lin, L.Q. Li, K. Jiang, Z.G. Hu, N. Xu, J. Sun, J.D. Wu, Au‐Decorated ZnO Nanorod Powder and Its Application in Photodegradation of Organic Pollutants in the Visible Region, Phys. Status Solidi A, (2021): 2000737. DOI:10.1002/pssa.202000737
[11]C.J. Yao, W.G. Chen, L.Q. Li, K. Jiang, Z.G. Hu, J.M. Lin, N. Xu, J. Sun, J.D. Wu, ZnO:Au nanocomposites with high photocatalytic activity prepared by liquid-phase pulsed laser ablation, Opt. Laser Technol., 133 (2021): 106533. DOI:10.1016/j.optlastec.2020.106533
[12]J.M. Lin, C.J. Yao, L. Wu, K. Jiang, Z.G. Hu, L.Q. Li, N. Xu, J. Sun, J.D. Wu, CuO: Synthesis in a Highly Excited Oxygen-Copper Plasma and Decoration of ZnO Nanorods for Enhanced Photocatalysis, J. Phys. Chem. C., 125 (2021): 9119-9128. DOI:10.1021/acs.jpcc.1c01233
[13]F. Hu, L. Wu, X.Y. Dai, S. Li, M. Lu, J. Sun, Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach, Photonics Res., 9 (2021): 1324. DOI:10.1364/PRJ.417866
[14]L.Q. Li, C.J. Yao, L. Wu, K. Jiang, Z.G. Hu, N. Xu, J. Sun, J.D. Wu, ZnS Covering of ZnO Nanorods for Enhancing UV Emission from ZnO, J. Phys. Chem. C., 125 (2021): 13732-13740. DOI:10.1021/acs.jpcc.1c02971
[15]C. Yao, J. Lin, L. Wu, L. Li, N. Xu, J. Sun, J. Wu, High‐Visible‐Light Photocatalytic Activity of ZnO–Au Nanocomposites Synthesized by a Controlled Hydrothermal Method, Phys. Status Solidi A, 218 (2021): 2100150. DOI:10.1002/pssa.202100150
[16]L.Q. Li, C.J. Yao, J. Gan, K. Jiang, Z.G. Hu, J.M. Lin, N. Xu, J. Sun, J.D. Wu, Large Enhancement and Its Mechanism of Ultraviolet Emission from ZnO Nanorod Arrays at Room and Low Temperatures by Covering with Ti Coatings, J. Phys. Chem. C., 124 (2020): 4827-4834. DOI:10.1021/acs.jpcc.9b10811
[17]W.G. Chen, C.J. Yao, J. Gan, K. Jiang, Z.G. Hu, J.M. Lin, N. Xu, J. Sun, J.D. Wu, ZnO colloids and ZnO nanoparticles synthesized by pulsed laser ablation of zinc powders in water, Mater. Sci. Semicond. Process, 109 (2020): 104918. DOI:10.1016/j.mssp.2020.104918
[18]C.J. Yao, J.M. Lin, L.Q. Li, Y.P. Qu, K. Jiang, Z.G. Hu, N. Xu, J. Sun, J.D. Wu, Sandwiched CdS/Au/ZnO Nanorods with Enhanced Ultraviolet and Visible Photochemical and Photoelectrochemical Properties via Semiconductor and Metal Cosensitizing, J. Phys. Chem. C., 124 (2020): 10941-10950. DOI:10.1021/acs.jpcc.0c00997
[19]F. Hu, X.Y. Dai, Z.Q. Zhou, X.Y. Kong, S.L. Sun, R.J. Zhang, S.Y. Wang, M. Lu, J. Sun, Black silicon Schottky photodetector in sub-bandgap near-infrared regime, Opt. Express, 27 (2019): 3161. DOI:10.1364/OE.27.003161
[20]Y.N. Qiu, C.J. Yao, C.B. Yao, J. Gan, W. Zhang, N. Xu, J. Sun, J.D. Wu, Spatial confinement of laser-induced plasma by laser-induced and obstacle-reflected shock wave and its effect on optical emission of laser-induced plasma, Aip Adv., 9 (2019): 095021. DOI:10.1063/1.5116267
[21]W. Zhang, J. Gan, L.Q. Li, Z.G. Hu, L.Q. Shi, N. Xu, J. Sun, J.D. Wu, Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration, Mater. Sci. Semicond. Process, 74 (2018): 147-153. DOI:10.1016/j.mssp.2017.10.028
[22]W. Zhang, P.P. Liang, H. Li, X. Yang, Y.N. Qiu, N. Xu, J.D. Wu, J. Sun, Spectroscopic studies of the plasma for the preparation of Al-N co-doped ZnO films, Spectrochimica Acta Part B: Atomic Spectroscopy, 131 (2017): 48-57. DOI:10.1016/j.sab.2017.03.004
[23]H. Cai, X. Yang, W. Zhang, H. Li, Y.N. Qiu, N. Xu, J.D. Wu, J. Sun, Enhanced light absorption and quenched photoluminescence resulting in photoactive poly(3-hexyl-thiophene)-covered ZnO/TiO2 nanotubes for high light harvesting efficiency, Sol. Energy Mater. Sol. Cells, 162 (2017): 47-54. DOI:10.1016/j.solmat.2016.12.040
[24]Z.T. Yu, H. Li, Y.N. Qiu, X. Yang, W. Zhang, N. Xu, J. Sun, J.D. Wu, Size-controllable growth of ZnO nanorods on Si substrate, Superlattices Microstruct., 101 (2017): 469-479. DOI:10.1016/j.spmi.2016.12.005
[25]H. Li, Z.Q. Xu, Z.C. Wu, J. Sun, J.D. Wu, N. Xu, Effects of the experimental conditions on the growth of crystalline NiCx nanorods via pulsed laser deposition accompanied by N2 annealing, Appl. Surf. Sci., 403 (2017): 670-676. DOI:10.1016/j.apsusc.2017.01.043
[26]X. Yang, Q. Yang, Z.G. Hu, W. Zhang, H. Li, L.Q. Li, Y.N. Qiu, N. Xu, J.D. Wu, J. Sun, Multi-band luminescent ZnO/ZnSe core/shell nanorods and their temperature-dependent photoluminescence, Rsc Adv., 6 (2016): 98413-98421. DOI:10.1039/C6RA21186K
[27]X. Yang, H. Li, W. Zhang, M.X. Sun, L.Q. Li, N. Xu, J.D. Wu, J. Sun, Enhanced visible photoelectrochemical properties of ZnO/CdS core/shell nanorods and their correlation with improved optical properties, Appl. Phys. Lett., 109 (2016): 203106. DOI:10.1063/1.4967831
[28]P.P. Liang, H. Cai, X. Yang, H. Li, W. Zhang, N. Xu, J. Sun, J.D. Wu, Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition, Spectrochimica Acta Part B: Atomic Spectroscopy, 125 (2016): 18-24. DOI:10.1016/j.sab.2016.09.003
[29]P.P. Liang, H. Cai, X. Yang, H. Li, W. Zhang, N. Xu, J. Sun, J.D. Wu, Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition, Spectrochimica Acta Part B: Atomic Spectroscopy, 125 (2016): 18-24. DOI:10.1016/j.sab.2016.09.003
[30]X. Yang, H. Li, W. Zhang, M.X. Sun, L.Q. Li, N. Xu, J.D. Wu, J. Sun, High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods, Acs Appl. Mater. Interfaces, 9 (2016): 658-667. DOI:10.1021/acsami.6b12259
[31]Q.H. You, P.P. Liang, Y.L. Li, H. Cai, X. Yang, F.L. Huang, J. Sun, N. Xu, J.D. Wu, In-situ doping preparation of Al-doped ZnO films via pulsed laser co-ablation of Zn and Al targets with assistance of oxygen plasma, Mater. Lett., 139 (2015): 228-231. DOI:10.1016/j.matlet.2014.10.081
[32]F.L. Huang, P.P. Liang, X. Yang, H. Cai, J.D. Wu, N. Xu, Z.F. Ying, J. Sun, Confinement effects of shock waves on laser-induced plasma from a graphite target, Phys. Plasmas, 22 (2015): 063509. DOI:doi:http://dx.doi.org/10.1063/1.4922850
[33]X. Yang, Q. Yang, Z.G. Hu, S. Guo, Y. Li, J. Sun, N. Xu, J.D. Wu, Extended photoresponse of ZnO/CdS core/shell nanorods to solar radiation and related mechanisms, Sol. Energy Mater. Sol. Cells, 137 (2015): 169-174. DOI:10.1016/j.solmat.2015.02.015
[34]H. Li, L. Guan, Y. Zhao, Z. Xu, J. Sun, J. Wu, N. Xu, Synthesis of single-crystalline NiCx nanorods by pulsed laser deposition accompanied by N-2 annealing, Mater. Lett., 145 (2015): 291-294. DOI:10.1016/j.matlet.2015.01.120
[35]L. Guan, H. Li, X. Liu, Y. Zhao, Z. Xu, J. Sun, Z. Ying, J. Wu, N. Xu, Synthesis and characterization of single-crystalline graphitic C3N4 nanocones, Crystengcomm, 17 (2015): 512-515. DOI:10.1039/c4ce02091j
[36]Q.H. You, H. Cai, Z.G. Hu, P.P. Liang, S. Prucnal, S.Q. Zhou, J. Sun, N. Xu, J. Wu, Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al-N co-doping, J. Alloy. Compd., 644 (2015): 528-533. DOI:10.1016/j.jallcom.2015.05.060
[37]L. Ma, T. Sun, H. Cai, Z. Zhou, J. Sun, M. Lu, Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis, The Journal of Chemical Physics, 143 (2015): 084706. DOI:10.1063/1.4929910
[38]P. Liang, X. Yang, H. Li, H. Cai, J. Sun, N. Xu, J. Wu, Study on re-sputtering during CNx film deposition through spectroscopic diagnostics of plasma, Phys. Plasmas, 22 (2015). DOI:10.1063/1.4932326