师资队伍
詹义强

Professional Title:

Position:

Email:yqzhan@fudan.edu.cn

Visiting Address:江湾校区交叉二号楼B7003

Tel:55664725

Home Page:https://hoie.fudan.edu.cn/

Research Interests

招生信息


欢迎具有光电、电子、材料、物理、化学等相关背景的学生报考博士、硕士研究生。


团队成员张佳老师(复旦大学光电研究院)每年有两个硕士名额,欢迎大家报考。

张佳老师介绍:https://ioe.fudan.edu.cn/b2/43/c45638a635459/page.htm





研究领域

  • AI辅助半导体光电子新材料新器件研究


  • 有机或有机无机杂化薄膜太阳能电池研究
  •  
  • 基于有机半导体或无机纳米材料的新型柔性电子器件研究

  • 新型智能传感器应用研究
  •  
  • 新型忆阻器及其神经网络应用研究

  •  

研究项目

 

以负责人或子项目负责人身份,承担国家及上海市基金二十余项:

1. 2022YFE0137400 科技部重点研发计划政府间国际科技创新合作项目, 科技部重点研发计划, 基于功能化碳基材料的高效率钙钛矿光伏器件研究, 2023-04 至 2025-03, 200万元, 负责人

2. 223-CXCY-XXXXXX JKW, XXX工程, , XXX钙钛矿太阳能电池技术研究, 2023-01至 2024-12, 280万元, 负责人

3. 62274040 国家自然科学基金委员会, 面上项目, , 铁电极化调控钙钛矿半导体光电特性机理研究及其在光伏器件中应用, 2023-01-01 至 2026-12-31, 53万元, 负责人

4. 钙钛矿光伏技术校企联合实验室,2022-10-01 至 2025-9-30, 1200万元, 负责人

5. 面向狭缝涂布的大尺寸钙钛矿薄膜原位实时光谱探测系统 2024-09-01 至 2026-08-31,300万元, 负责人

6. 17JC1401300基于柔性人工突触的类脑智能网络基础器件研究,上海市科技创新基础研究项目,2017-2019,  100 负责人

7. 17ZR1402100基于新型有机无机钙钛矿材料的光电探测器件研究,上海市自然科学基金,2017-202020 负责人

8. SAT2017-081表面等离子体增强有机光电探测器研究,上海航天科技创新基金项目,2017-201920 负责人

9. 2016YFE0110700纳米硅基叠层和超晶格发光薄膜及器件研究,科技部政府间国际科技创新合作重点专项中白合作项目,2016-201870万(总经费234万)负责人

10. 61774046高效稳定钙钛矿太阳能电池关键技术研究,国家自然科学基金面上基金,2018-2021,67 负责人

11. 41421010201柔性衬底大面积化合物半导体薄膜太阳电池技术,军委装备发展部共用技术和重点基金项目,2017-2020 424万。负责人

12. 11104037有机自旋电子学器件的界面分析和界面修饰,国家自然科学基金青年基金,2012-201430 负责人

13. 12PJ1401300有机自旋电子器件研究,上海市浦江人才计划,2012-201420 负责人

14. 348-2011-7307  Spin injection in hybrid organic semiconductor spintronics,瑞典自然科学研究委员会link项目,2012-201436万(总金额68万)负责人

15.    2011AA100701食品安全智能包装技术研究,科技部863专项子项目,2011-2013300万(总金额8000万) 子课题负责人

16.     11134002有机太阳能电池中激子和载流子行为的实验与理论研究,国家自然科学基金重点项目,2012-2016160万(总金额320万)子课题负责人

17.    有机电子器件研究,教育部留学归国人员科研启动基金,2013-20143 负责人

 

 

Academic Positions

长期从事有机和有机无机杂化半导体光电器件、AI辅助半导体光电子材料和器件研究、柔性电子器件的研究,在Science、Joule、Adv. Mater.、Light Sci. & Appl.、Acs Energy Letters等SCI收录杂志发表研究论文150余篇,论文被他引超过4000次。相关成果被Science、Nature等权威期刊多次重点引用和评述。先后承担了科技部重点研发计划、军科委XXX工程、装备发展部共用技术、自然科学基金、上海市创新行动计划等项目。并受邀担任美国能源部DOE、欧洲研究理事会ERC、波兰自然科学中心、罗马尼亚国家发展创新委员会、香港研究资助局国际评议专家;受邀担任APL energy,The innovation: energy等杂志的编委;目前担任上海市电子学会理事会理事,中国电子学会空间电子专委会常务委员、中国材料研究学会太阳能材料专委会委员、中国感光学会光电材料与器件专业委员会委员。

Awards

1、2022年荣获复旦大学钟杨式十佳科研团队带头人
2、2023年荣获“复旦大学青年五四奖章”;
3、2023年荣获复旦大学十佳“三好”研究生导学团队;

Education and Working Experience

1.2016/12-至今,复旦大学,信息科学与工程学院,研究员

2.2011/1-2016/11,复旦大学,信息科学与工程学院,副研究员

3.2007/5-2010/12,瑞典林雪平大学,IFM,助理教授

4.2005/9-2007/3,意大利CNR ISMN,博士后,合作导师:Alek Dediu

5.2000.9至2005.7   复旦大学物理系   理学博士

6.1996.9至2000.7   复旦大学物理系   理学学士

 

Teaching

  •  《大学物理B》、《有机微电子器件》、《柔性电子技术》、《用于VLSI小尺寸MOS器件模型》

Publications

2024

1          Wang, Y. et al. Highly Oriented FAPbI3 via 2D Ruddlesden Popper Perovskite Template Growth. Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202401721

2          Wang, H. et al. Controlled dion-jacobson low-dimensional surface phase enables highly efficient and stable perovskite solar cells. Nano Energy 128, 109875 (2024). https://doi.org/10.1016/j.nanoen.2024.109875

3          Sun, H. et al. Optoelectronic synapses based on a triple cation perovskite and Al/MoO<sub>3</sub> interface for neuromorphic information processing. Nanoscale Advances 6, 559-569 (2024). https://doi.org/10.1039/d3na00677h

4          Shi, Z. et al. Room Temperature Crystallized Phase‐Pure α‐FAPbI3 Perovskite with In‐Situ Grain‐Boundary Passivation. Advanced Science (2024). https://doi.org/10.1002/advs.202400275

5          Liu, K. et al. Lead (Pb) Management in the Entire Life Cycle of Highly Efficient and Stable Perovskite Solar Cells. Energy & Environmental Science (2024). https://doi.org/10.1039/d4ee01829j

6          Zhang, Xin, Shengfan Wu, Hong Zhang*, Alex KY Jen*, Yiqiang Zhan*, and Junhao Chu. "Advances in inverted perovskite solar cells." Nature Photonics (2024): 1-11.

7          He, F. et al. Hydrophobic Electron‐Transport Layer for Efficient Tin‐Based Perovskite Solar Cells. Advanced Functional Materials (2024). https://doi.org/10.1002/adfm.202405611

8          Cai, Y. et al. In-plane ferroelectric-reconfigured interface towards dual-modal intelligent vision. Next Nanotechnology 5, 100052 (2024). https://doi.org/10.1016/j.nxnano.2024.100052

9          Behrouznejad, F., Zhan, Y. & Taghavinia, N. UV Laser Scribing for Perovskite Solar Modules Fabrication, Pros, and Cons. IEEE Journal of Photovoltaics, 1-10 (2024). https://doi.org/10.1109/jphotov.2024.3396515

10         Behrouznejad, F. et al. Modification of copper-based chalcogenide nanocrystals' interconnections for efficient hole transportation in Perovskite solar cell. Materials Research Bulletin 178, 112892 (2024). https://doi.org/10.1016/j.materresbull.2024.112892

 

2023

11         Zhang, X. et al. Minimizing the Interface-Driven Losses in Inverted Perovskite Solar Cells and Modules. ACS Energy Letters 8, 2532-2542 (2023). https://doi.org/10.1021/acsenergylett.3c00697

12         Zhang, X. et al. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 46803-46811 (2023). https://doi.org/10.1021/acsami.3c08119

13         Xu, X. et al. Tunable Fabrication of MAPbX<sub>3</sub> Triangular‐Micro‐Wires Array for Constructing High Sensitivity Photodetector. Advanced Materials Technologies 8 (2023). https://doi.org/10.1002/admt.202300946

14         Wang, Y. et al. Intermediate Phase Free α‐FAPbI<sub>3</sub> Perovskite via Green Solvent Assisted Perovskite Single Crystal Redissolution Strategy. Advanced Materials 35 (2023). https://doi.org/10.1002/adma.202302298

15         Wang, H. et al. Green Solvent Polishing Enables Highly Efficient Quasi-2D Perovskite Solar Cells. ACS Applied Materials & Interfaces 15, 36447-36456 (2023). https://doi.org/10.1021/acsami.3c08182

16         Tan, H., Du, L., Yang, F., Chu, W. & Zhan, Y. Two-dimensional materials in photonic integrated circuits: recent developments and future perspectives [Invited]. Chin. Opt. Lett. 21, 110007 (2023).

17         Rafique, S. et al. Ultralow Thermal Conductivity Achieved by All Carbon Nanocomposites for Thermoelectric Applications. Advanced Electronic Materials 9 (2023). https://doi.org/10.1002/aelm.202300023

18         Pan, Y. et al. An Ultrasensitive Sandwiched Heterostructure Planar Photodetector with Gradient Quasi‐2D Perovskite. Advanced Electronic Materials, 2201028 (2023). https://doi.org/10.1002/aelm.202201028

19         Liu, K. et al. Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule 7, 1033-1050 (2023). https://doi.org/10.1016/j.joule.2023.03.019

20         Liu, K. et al. In Situ Cross‐Linking Strategy to Enable Highly Stable Perovskite Solar Cells. Small 19 (2023). https://doi.org/10.1002/smll.202304189

21         Li, X. et al. Spectral response regulation strategy by downshifting materials to improve efficiency of flexible perovskite solar cells. Nano Energy 114, 108619 (2023). https://doi.org/10.1016/j.nanoen.2023.108619

22         Li, T. et al. Alleviating the Crystallization Dynamics and Suppressing the Oxidation Process for Tin‐Based Perovskite Solar Cells with Fill Factors Exceeding 80 Percent. Advanced Functional Materials (2023). https://doi.org/10.1002/adfm.202308457

23         jiang, C. et al. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations. Ultrasonics 135, 107124 (2023). https://doi.org/10.1016/j.ultras.2023.107124

24         Hatamvand, M. et al. The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 112076 (2023). https://doi.org/10.1016/j.vacuum.2023.112076

25         Feng, J. et al. An Energy-Efficient Flexible Multi-Modal Wireless Sweat Sensing System Based on Laser Induced Graphene. Sensors 23, 4818 (2023). https://doi.org/10.3390/s23104818

26         Deng, L. et al. Stabilizing Bottom Side of Perovskite via Preburying Cesium Formate toward Efficient and Stable Solar Cells. Advanced Functional Materials 33 (2023). https://doi.org/10.1002/adfm.202303742

27         Cai, Y. et al. In-situ artificial retina with all-in-one reconfigurable photomemristor networks. npj Flexible Electronics 7 (2023). https://doi.org/10.1038/s41528-023-00262-3

28         Cai, X. et al. Discovery of All-Inorganic Lead-Free Perovskites with High Photovoltaic Performance via Ensemble Machine Learning. Materials Horizons (2023). https://doi.org/10.1039/d3mh00967j

29         Behrouznejad, F. et al. The fingerprint of charge transport mechanisms on the incident photon-to-current conversion efficiency spectra of perovskite solar cells. Solar Energy Materials and Solar Cells 253, 112234 (2023). https://doi.org/10.1016/j.solmat.2023.112234

30         Alias, N. et al. Air-Processable Perovskite Solar Cells by Hexamine Molecule Phase Stabilization. ACS Omega 8, 18874-18881 (2023). https://doi.org/10.1021/acsomega.3c01236

31         Ahmed, W. et al. ZnO intercalated into graphene oxide based 2-D binary composite for improved thermal properties using as a potential nanofluid. Journal of Molecular Liquids 391, 123426 (2023). https://doi.org/10.1016/j.molliq.2023.123426

32         Ahmed, W. et al. Preparation, applications, stability and improved thermal characteristics of sonochemically synthesized nanosuspension using varying heat exchangers, a Review. Journal of Molecular Liquids 387, 122665 (2023). https://doi.org/10.1016/j.molliq.2023.122665

 

2022

33         Zhang, X. et al. An Integrated Bulk and Surface Modification Strategy for Gas‐Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. Solar RRL, 2200053 (2022). https://doi.org/10.1002/solr.202200053

34         Wang, Y. et al. Stabilizing α-phase FAPbI 3 solar cells. Journal of Semiconductors 43, 040202-040202-040203 (2022).

35         Wang, H. et al. Band Alignment Boosts over 17% Efficiency Quasi-2D Perovskite Solar Cells via Bottom-Side Phase Manipulation. ACS Energy Letters 7, 3187-3196 (2022). https://doi.org/10.1021/acsenergylett.2c01453

36         Usman, M. et al. Facile synthesis of ironnickelcobalt ternary oxide (FNCO) mesoporous nanowires as electrode material for supercapacitor application. Journal of Materiomics 8, 221-228 (2022).

37         Tangyao, S., Yiqiang, Z. & Lei, S. Time-resolved spectroscopy for the study of perovskite. Chinese Journal of Electronics 32, 1 (2022). https://doi.org/10.23919/cje.2022.00.064

38         Song, W. et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: a Study on the Effects of Volatile A-Cation Additives. ACS Applied Materials & Interfaces 14, 27922-27931 (2022). https://doi.org/10.1021/acsami.2c05241

39         Samanta, S. et al. Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in CuS. ChemNanoMat 8 (2022). https://doi.org/10.1002/cnma.202200238

40         Numan, A. et al. Advanced nanoengineered—customized point-of-care tools for prostate-specific antigen. Microchimica Acta 189 (2022). https://doi.org/10.1007/s00604-021-05127-y

41         Mehmood, S. et al. in Dye-Sensitized Solar Cells     103-136 (Elsevier, 2022).

42         Liu, F. et al. Highly Efficient and Stable Self‐Powered Mixed Tin‐Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology. Advanced Science 10, 2205879 (2022). https://doi.org/10.1002/advs.202205879

43         Liu, F. et al. New Lead-free Organic–Inorganic Hybrid Semiconductor Single Crystals for a UV–Vis–NIR Broadband Photodetector. ACS Applied Materials & Interfaces 14, 33850-33860 (2022). https://doi.org/10.1021/acsami.2c08116

44         Li, X. et al. Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry 67, 1-7 (2022). https://doi.org/10.1016/j.jechem.2021.09.021

45         Li, C., Rafique, S. & Zhan, Y. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. The Journal of Physical Chemistry Letters 13, 11610-11621 (2022). https://doi.org/10.1021/acs.jpclett.2c02983

46         Khan, Q. U., Begum, N., Khan, K., Rauf, M. & Zhan, Y. Novel Porphyrin–Perylene diimide for ultrafast high-performance resistive memory devices. Organic Electronics 103, 106453 (2022).

47         Jiang, C., Liu, C., Zhan, Y. & Ta, D. The Spectrum-Beamformer for Conventional B-Mode Ultrasound Imaging System: Principle, Validation, and Robustness. Ultrasonic Imaging, 01617346221085184 (2022).

48         Deng, L. et al. Strain Release and Defect Passivation in Formamidinium-Dominated Perovskite via a Novel in-Plane Thermal Gradient Assisted Crystallization Strategy. ACS Applied Materials & Interfaces 14, 52007-52016 (2022). https://doi.org/10.1021/acsami.2c16247

49         Cai, Y. et al. Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses. npj Flexible Electronics 6 (2022). https://doi.org/10.1038/s41528-022-00152-0

50         Cai, X. et al. Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization. Light: Science & Applications 11 (2022). https://doi.org/10.1038/s41377-022-00924-3

2021

51         Zhang, H. et al. Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials 31 (2021). https://doi.org/10.1002/adfm.202100205

52         Zamanpour, F. et al. Fast Light-Cured TiO2 Layers for Low-Cost Carbon-Based Perovskite Solar Cells. ACS Applied Energy Materials 4, 7800-7810 (2021). https://doi.org/10.1021/acsaem.1c01168

53         Shahid, M. et al. Platinum doped titanium dioxide nanocomposite an efficient platform as anode material for methanol oxidation. Journal of Materials Research and Technology 15, 6551-6561 (2021). https://doi.org/10.1016/j.jmrt.2021.11.077

54         Sagadevan, S. et al. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews 10, 605-635 (2021). https://doi.org/10.1515/ntrev-2021-0043

55         Prathapani, S. & Zhan, Y. A Comprehensive Perspective on the Fabrication of CuGaSe2/Si Tandem Solar Cells. Energy Technology 9, 2100193 (2021). https://doi.org/10.1002/ente.202100193

56         Numan, A. et al. Rationally engineered nanosensors: A novel strategy for the detection of heavy metal ions in the environment. Journal of Hazardous Materials, 124493 (2021). https://doi.org/10.1016/j.jhazmat.2020.124493

57         Li, C. et al. Highly Luminescent and Patternable Block Copolymer Templated 3D Perovskite Films. Advanced Materials Technologies, 2001209 (2021). https://doi.org/10.1002/admt.202001209

58         Hu, Z. et al. A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing. Sensors and Actuators B: Chemical 346, 130462 (2021). https://doi.org/10.1016/j.snb.2021.130462

59         Ghavaminia, E. et al. Polyvinylcarbazole as an Efficient Interfacial Modifier for Low‐Cost Perovskite Solar Cells with CuInS2/Carbon Hole Collecting Electrode. Solar RRL (2021). https://doi.org/10.1002/solr.202100074

60         Chen, W. et al. Improving the Efficiency of Hole-Conductor-Free Carbon-Based Planar Perovskite Solar Cells with Long-Term Stability by Using the Hydrazine Acetate Additive via the One-Step Method. ACS Applied Electronic Materials 3, 5211-5218 (2021). https://doi.org/10.1021/acsaelm.1c00596

61         Cai, X. et al. Discovery of Lead‐Free Perovskites for High‐Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities. Advanced Science 9, 2103648 (2021). https://doi.org/10.1002/advs.202103648

62         Begum, S. et al. Investigation of Morphology, Crystallinity, Thermal stability, Piezoelectricity and Conductivity of PVDF nanocomposites reinforced with Epoxy Functionalized MWCNTs. Composites Science and Technology, 108841 (2021). https://doi.org/10.1016/j.compscitech.2021.108841

63         Alias, N. et al. Photoelectrical Dynamics Uplift in Perovskite Solar Cells by Atoms Thick 2D TiS2 Layer Passivation of TiO2 Nanograss Electron Transport Layer. ACS Applied Materials & Interfaces 13, 3051-3061 (2021). https://doi.org/10.1021/acsami.0c20137

64         Ahmed, I. et al. There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light: Science & Applications 10 (2021). https://doi.org/10.1038/s41377-021-00609-3

2020

65         Yu, X. X. et al. Memory Devices via Unipolar Resistive Switching in Symmetric Organic-Inorganic Perovskite Nanoscale Heterolayers. Acs Applied Nano Materials 3, 11889-11896 (2020). https://doi.org/10.1021/acsanm.0c02457

66         Wang, H. et al. Extremely Low Dark Current MoS2 Photodetector via 2D Halide Perovskite as the Electron Reservoir. Advanced Optical Materials 8, 1901402 (2020). https://doi.org/10.1002/adom.201901402

67         Umar, A. A. et al. Enhancing the interfacial carrier dynamic in perovskite solar cells with an ultra-thin single-crystalline nanograss-like TiO2 electron transport layer. Journal of Materials Chemistry A 8, 13820-13831 (2020). https://doi.org/10.1039/d0ta03176c

68         Singh, S. et al. Low-potential immunosensor-based detection of the vascular growth factor 165 (VEGF(165)) using the nanocomposite platform of cobalt metal-organic framework. Rsc Advances 10, 27288-27296 (2020). https://doi.org/10.1039/d0ra03181j

69         Singh, S. et al. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic framework. J Hazard Mater 399, 123042 (2020). https://doi.org/10.1016/j.jhazmat.2020.123042

70         Shi, Z. J. et al. [(C8H17)(4)N](4)[SiW12O40] (TASiW-12)-Modified SnO(2)Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl 4, 2000406 (2020). https://doi.org/10.1002/solr.202000406

71         Shahid, M. M. et al. A glassy carbon electrode modified with tailored nanostructures of cobalt oxide for oxygen reduction reaction. International Journal of Hydrogen Energy 45, 18850-18858 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.122

72         Pan, Y. Y. et al. Detection range extended 2D Ruddlesden-Popper perovskite photodetectors. Journal of Materials Chemistry C 8, 3359-3366 (2020). https://doi.org/10.1039/c9tc06109f

73         Numan, A. et al. Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. Journal of Alloys and Compounds 819, 153019 (2020). https://doi.org/10.1016/j.jallcom.2019.153019

74         Malek, N. A. A. et al. Enhanced Charge Transfer in Atom Thick 2H–WS2 Nanosheets Electron Transport Layers of Perovskite Solar Cells. Solar RRL 4, 2000260 (2020). https://doi.org/10.1002/solr.202000260

75         Lu, H. Z. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI(3) perovskite solar cells. Science 370, 74 eabb8985 (2020). https://doi.org/10.1126/science.abb8985

76         Hatamvand, M. et al. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 71, 104609 (2020). https://doi.org/10.1016/j.nanoen.2020.104609

77         Forouzandeh, M. et al. Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells. Journal of Power Sources 475, 228658 (2020). https://doi.org/10.1016/j.jpowsour.2020.228658

78         Behrouznejad, F. et al. Effective Carbon Composite Electrode for Low-Cost Perovskite Solar Cell with Inorganic CuIn0.75Ga0.25S2 Hole Transport Material. Solar RRL 4, 1900564 (2020). https://doi.org/10.1002/solr.201900564

79         Abd Malek, N. A. et al. Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells. Optical Materials 104, 109933 (2020). https://doi.org/10.1016/j.optmat.2020.109933

 

 

 

 

 

 

 

 

 


Copyrights 2017 © The School of Information Science and Technology, Fudan University