师资队伍
陆明

Professional Title:

Position:信息学院教授委员会成员

Email:minglu55@fudan.edu.cn

Visiting Address:江湾校区交叉二号楼B3019室

Tel:

Home Page:

Research Interests

主要研究方向为硅光(硅基光电子)技术,包括全硅激光器、黑硅太阳电池、全硅红外探测器、红外太阳电池等。研究工作被国内外30多家主流和专业媒体的报道。

全硅激光器、全硅WLED和高效黑硅太阳电池的主要发明人。在表面等离激元、场钝化效应、光致发光增强、光致发光转换、硅表面纳米织构、硅的全太阳光谱强吸收、单晶硅电池制备、金属离子扩散行为等方面有着多年研究积累。曾负责及承担多项国防和国家自然科学基金项目、973项目子课题、上海市科委重点项目。


部分指导的研究生就业:

中科院上海技术物理所,百人计划获得者

中电55所,军科委项目首席专家

中科院西安光机所

合肥工业大学机械工程系

上海集成电路研发中心

汇添富基金管理有限公司

创智慧源董事长及多家公司创始人



Awards

  • 中国工程物理研究院预研项目二等奖

  • 1999----上海市高校优秀青年教师称号

  • 2003----教育部优秀青年教师基金

Education and Working Experience

  • 复旦大学物理系    本科学生

  • 复旦大学物理系    硕士研究生

  • 复旦大学物理系    博士研究生

  • 奥地利Graz大学博士后   博士后

  • 美国Houston大学   助理研究员

Teaching

  • 本科课程:《大学物理》

  • 研究生课程:《专业英语》 《纳米光子学》

Publications

    已在国内外学术刊物上发表SCI论文100余篇,授权发明专利8项,参与编写英语学术专著1部(美国Nova科学出版社)。完成多份国防报告。

近年发表文章:

  1.  Achieving high brightness of Si LED via a field effect approachAppl. Phys. Lett. 104, 061105(2014)

  2. Surface plasmons on Ag clusters induced via ultrasonic and thermal treatments and their enhancement of Si light emissionPhysica E 64, 63-67(2014)

  3.  Mass production of Si quantum dots for c-Si solar cell efficiency improvementMater. Lett. 133, 80-82(2014)

  4.  Enhancing the brightness of Si nanocrystal light emitting device with electro-excited surface plasmonsNanotechnology 25, 355203(2014)

  5.  Enhancing optical gains in Si nanocrystals with hydrogenation and cerium dopingJ. Appl. Phys. 116, 043512(2014)

  6.  Effects of crystallographic surface and co-sputtered atom on the growth of ion-sputter induced Si nanocone arraysAppl. Phys. A 119, 1033-1038(2015)

  7. A synergetic effect of surface texture and field passivations on improving Si solar cell performancePhysica E 71, 96-100(2015)

  8.  Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysisJ. Chem. Phys. 143, 084706(2015)

  9.  White light emissions and optical gains from a Si nanocrystal thin filmNanotechnology 26, 475203(2015)

  10. A synergetic application of surface plasmon and field effect to improve Si solar cell performanceNanotechnology 27, 145203(2016)

  11.  A porous Si emitter crystalline-Si solar cell with 18.97% efficiency sNanotechnology 27,  425207(2016)

  12. High Fill Factors of Si Solar Cells Achieved by Using an Inverse Connection Between MOS and PN JunctionsNanoscale Res. Lett. 11, 453(2016)

  13.  A Synergetic Effect of Surface Plasmon and Ammoniation on the Enhanced Photocatalytic Activity of ZnO NanorodsRSC Advances 6, 97808-97817(2016)

  14. Light emissions from a Si crystalline thin film prepared by HSQPhysica E 89, 57-60(2017)

  15. Enhancing the ultraviolet-visible-near infrared photovoltaic responses of crystalline-silicon solar cell by using aluminum nanoparticlesPhysica E 94, 174-177(2017)

  16.  An Investigation on a Crystalline-Silicon Solar Cell with Black Silicon Layer at the RearNanoscale Research Letters, 12, 623(2017)

  17.  An all-silicon laser based on silicon nanocrystals with high optical gainsScience Bulletin 63(2)75-77 (2018)

  18.  A Synergetic Effect of Ytterbium-doping and Ammoniation on Enhancing UV and visible Photocatalytic Activities of TiO2Chemical Physics Letters, 2018, 64C: 53-59.

  19.  Black silicon Schottky photodetector in sub-bandgap near-infrared regimeOptics Express 27(3),  3161-3168(2019)

  20.  Emission characteristics and wavelength tunability of all-silicon distributed feedback lasersIEEE JSTQE 26(2), 1500107(1-7)(2020)

  21.  All-Inorganic Silicon White Light-Emitting Device with an External Quantum Efficiency of 1.0%Opt. Express 28, 194(2020). (该工作被Laser Focus World作专题报导,J. Wallace, Laser Focus World 56, 31(2020))

  22. High-pressure hydrogenation induced light emission enhancement of Si nanocrystalsOpt. Express 28 23320-233282020

  23. Improving the performance of crystalline Si solar cell by high-pressure hydrogenationChinese Phys. B Vol. 29, No. 11 (2020) 118801

  24. High-pressure Ar passivation to enhance the photoluminescence of Si nanocrystals, Physics E 131, 114680(2021).

  25. High brightness silicon nanocrystal white light-emitting diode with luminance of 2060 cd/m2, Optics Express 29, 34126-34134(2021).  (该工作被Semiconductor Today作专题报导, M. Cooke, Semiconductor Today, October (2021)。它是当时最高亮度的硅LED——此结论见:L. Pavesi, “Thirty Years in Silicon Photonics: A Personal View”, Frontiers in Physics 9, 786028 (December 2021))

  26. Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach, Photonics Research 9, 1324-1329(2021). 

  27. Dispersed freestanding silicon nanocrystals for Si white light-emitting diode, Chemical Physics Letters 785, 139155(2021). 

  28. A synergistic approach of interface engineering to improve the performance of silicon nanocrystal light-emitting diode, Vacuum 197, 110822(2022).

  29. Observation of waveguide Fabry-Perot lasing in highly efficient Si nanocrystals, Results in Physics 34, 105336 (2022).

  30. Sub-bandgap near-infrared photovoltaic response in Au/Al2O3/n-Si metal–insulator–semiconductor structure by plasmon-enhanced internal photoemission, Discover Nano, 18(2023): 33.

  31. A Silicon Sub-Bandgap Near-Infrared Photodetector with High Detectivity Based on Textured Si/Au Nanoparticle Schottky Junctions Covered with Graphene Film, Sensors, 23(2023): 6184.




Copyrights 2017 © The School of Information Science and Technology, Fudan University