论文、专利、标准
1. 论文
Google Scholar被引3500+
https://scholar.google.com/citations?hl=zh-CN&user=8UyWkYQAAAAJ&view_op=list_works
[41] A dual-parameter evaluation method for color-enhancement technologies and its application
to lighting-spectrum optimization for color-deficient observers
S. Zhao, X. Zhao, Q. Dai*, Optics Communications, 572, 130955 (2024)
[40] Comparative analysis of circadian lighting models: Melanopic illuminance vs. circadian stimulus
Y. Huang, J. Li, Q. Dai*, Optics Express, 32, 29494-29513 (2024)
[39] Spectral design method to simulate tunable spectra of various light sources based on multi-channel LEDs
Z. Tao, X. Zhao, S. Li, Q. Dai*, IEEE Photonics Journal, 16, 8100209 (2024)
[38] The impact of cyanopic illuminance on evening light induced circadian effects
Y. Huang, Z. Hu, J. Li, Q. Dai*, Building and Environment, 242C, 110599 (2023) 中科院1区top
[37] Assessment of spatial brightness for a visual field in interior spaces based on indirect corneal illuminance
Z. Hu, P. Zhang, B. Wei, W. Ding, Q. Dai*, Optics Express, 37, 997-1013 (2023)
[36] A simplified computational model for Circadian Stimulus based on illuminance, correlated color temperature, and color rendering index
S. Li, X. Zhao, Z. Tao, B. Wei, W. Ding, Q. Dai*, IEEE Photonics Journal, 14, 3762510 (2022)
[35] On the estimation of Circadian Stimulus based on illuminance, correlated color temperature, and color rendering index
S. Li, Zhao, Z. Tao, B. Wei, W. Ding, Q. Dai*, Building and Environment, 226, 109765 (2022) 中科院1区top
[34] The impact of melanopic illuminance and CCT on spatial brightness perception of illuminated interiors and energy-saving implications
Z. Hu, P. Zhang, Y. Huang, M. Li, Q. Dai*, Building and Environment, 223, 109524 (2022) 中科院1区top
[33] A practical method for field measurement of mean room surface exitance
P. Zhang, M. Li, Y. Huang, Q. Dai*, Lighting Research & Technology, 54, 657-673 (2022)
[32] 面向视觉与节律健康需求的中小学校教室照明研究
胡治国、魏彬、丁文超、黄滢滢、戴奇*,照明工程学报,第33卷第6期,17-26 (2022)
[31] 基于小目标视看距离的隧道照明安全性研究
胡治国、冯守中、冒卫星、刘立湘、戴奇*,照明工程学报,第33卷第1期,192-204 (2022)
[30] Efficient circadian daylighting: A proposed equation, experimental validation, and the consequent importance of room surface reflectance
Q. Yao, W. Cai, M. Li, Z. Hu, P. Xue, Q. Dai*, Energy and Buildings 210, 109784 (2020)
[29] 空间视亮度模型和实验评价量化方法
胡治国、戴奇*,照明工程学报,第31卷第6期,9-20 (2020)
[28] Chromaticity-based real-time assessment of melanopic and luminous efficiency of smartphone displays
Q. Yao, L. Zhang, Q. Dai*, Y. Wang, P. Wu, Optics Express 28, 4898-4910 (2020)
[27] Estimation of Possible Suppression of Melatonin Production Caused by Exterior Lighting in Commercial Business Districts in Metropolises
S. Chen, M. Wei*, Q. Dai*, Y. Huang, LEUKOS 15, 137-144 (2020)
[26] Variable set points of glare control strategy for side-lit spaces: Daylight glare tolerance by time of day
Y. Bian, Q. Dai*, Y. Ma, L. Liu, Solar Energy 201, 268-278 (2020)
[25] Quantification assessment of light pollution of façade lighting display in Shenzhen, China
Q. Yao, H. Wang, Q. Dai, F. Shi, Optics Express 28, 14100-14108 (2020)
[24] Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs
G. Di, Z. Zhu, Q. Dai, H. Zhang, X. Shen, Y. Qiu, Y. Huang, J. Yu, D. Yin, S. Küppers, Chemical Engineering Journal 379, 122296 (2020)
[23] Quantitative effects of PM concentrations on spectral distribution of global normal irradiance
S. Ye, P. Xue W. Fang, Q. Dai, J. Peng, Y. Sun, J. Xie, J. Liu, Soler Energy, 220, 1099-1108 (2020)
[22] Calculation and measurement of mean room surface exitance: The accuracy evaluation
Q. Dai*, Y. Huang, L. Hao, W. Cai, Lighting Research & Technology 51, 956-968 (2019)
[21] Quantification of tri-chromatic light sources to achieve tunable photopic and mesopic luminous efficacy of radiation
Q. Yao, L. Zhang, Q. Dai*, J. Utterly*, LEUKOS 15, 271-280 (2019)
[20] 节律健康照明的光谱和照明设计优化
黄滢滢、林怡、戴奇*,照明工程学报,第30卷第6期,11-17 (2019)
[19] The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design
W. Cai, J. Yue, Q. Dai*, L. Hao, Y. Lin, W. Shi, Y. Huang, M. Wei, Building and Environment 141, 288-297 (2018) 中科院1区top
[18] Spatial and spectral illumination design for energy-efficient circadian lighting
Q. Dai*, Y. Huang, L. Hao*, Y. Lin, K. Chen, Building and Environment, 146, 216-225 (2018) 中科院1区top
[17] Spectral optimisation and a novel lighting-design space based on circadian stimulus
Q. Dai*, W. Cai, L. Hao, W. Shi, Z. Wang, Lighting Research & Technology 50, 1198-1211 (2018)
[16] Spectral design for potential health lighting based on combined circadian and visual effects
Q. Dai*, W. Shi, Z. Wang, China Int. Forum Solid State Light.: Int. Forum Wide Bandgap Semicond. China, SSLChina: IFWS 2018-January, 91-95 (2018)
[15] A proposed lighting-design space: circadian effect versus visual illuminance
Q. Dai*, W. Cai, W. Shi, L. Hao, M. Wei, Building and Environment 122, 287-293 (2017) 中科院1区top
[14] Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting
Q. Dai*, Q. Shan, H. Lam, L. Hao, Y. Lin, Z. Cui, Optics Express 24, 20049-20058 (2016)
[13] Spectral optimization simulation of white light based on the photopic eye-sensitivity curve
Q. Dai*, L. Hao, Y. Lin, Z. Cui, Journal of Applied Physics 119, 053103 (2016)
[12] Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities
Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, M. A. Banas, Applied Physics Letters 94, 111109 (2009) 被引353 次,其中被诺贝尔奖得主团队引用22次
[11] Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes
Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park, , Applied Physics Letters 97, 133507 (2010) 被引259次,其中被诺贝尔奖得主团队引用3次
[10] On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms
Q. Dai, Q. Shan, J. Cho, E. F. Schubert, Mary H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park, Applied Physics Letters 98, 033506 (2011)
[9] Origin of efficiency droop in GaN-based light-emitting diodes
M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert*, J. Piprek, Y. Park, Applied Physics Letters 91, 183507 (2007)
[8]On the temperature dependence of electron leakage from the active region of GaInN/GaN LEDs
D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, Applied Physics Letters 99, 041112 (2011)
[7] Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes
Q. Shan, D. S. Meyaard, Q. Dai, J. Cho, E. F. Schubert, J. K. Son, and C. Sone, Applied Physics Letters 99, 253506 (2011)
[6] Characteristics of dot-like green satellite emission in GaInN LEDs
A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son, and Y. Park, Applied Physics Letters 98, 023503 (2011)
[5] Analysis of thermal properties of GaInN light-emitting diodes and laser diodes
Q. Shan, Q. Dai, S. Chhajed, J. Cho, and E. F. Schubert, Journal of Applied Physics 108, 084504 (2010)
[4] Electroluminescence induced by photoluminescence excitation in GaInN/GaN LEDs
M. F. Schubert, Q. Dai, J. Xu, J. K. Kim, and E. F. Schubert, Applied Physics Letters 95, 191105 (2009)
[3] On resonant optical excitation and carrier escape in GaInN/GaN quantum wells
M. F. Schubert, J. Xu, Q. Dai, F. W. Mont, J. K. Kim, and E. F. Schubert, Applied Physics Letters 94, 081114 (2009)
[2] Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, J. Grandusky, M. Mendrick, X. Li, and J. A. Smart, Applied Physics Letters 93, 192108 (2008)
[1] Parasitic sub-band-gap emission originating from compensating native defects in Si doped AlGaN
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, W. Liu, S. Wu, X. Li, and J. A. Smart, Applied Physics Letters 91, 121110 (2007)
2. 授权专利
[1] "Planckian and non-planckian dimming of solid state light sources"
Q. Dai, M. Li, R. Harrison, E. Haidar
获以下国家授权:
中国发明专利 CN104272870 / ZL2013800232182.2(授权日期2016年9月);
美国发明专利 US 9271362 (授权日期2016年2月);
欧洲发明专利 EP2845442(授权日期2018年4月);
加拿大发明专利 CA2868837(授权日期2016年11月)
[2] "Formed three-dimensional lighting devices"
Q. Dai, B. Radl, R. Speer, R. Pereyra, Q. Huang, D. Harriott, Z. Wang, 欧洲发明专利EP3198189(授权日期2018年9月)
[3] “颜色观察装置”
戴奇、黄滢滢,中国发明专利 专利号 ZL202210700149.5(授权日:2025年01月10日)
[4] “一种用于色觉缺陷补偿的图像显示方法及装置”
戴奇、赵晓杰、赵书新,中国发明专利 专利号 ZL202111392984.9(授权日:2024年12月5日)
[5] “一种光环境测试分析仪”
戴奇、黄滢滢、李敏、杨樾、居家奇、张鹏聪、麦长,中国发明专利 专利号 ZL202011198558.7(授权公告日:2021年9月17日)
[6] “一种可变色温全光谱LED光源与灯具”
戴奇、黄滢滢、李山山,中国发明专利 专利号 ZL202110991154.1(授权公告日:2022年8月16日)
[7] “一种用于光照节律效应强度测量探头的滤光片”
戴奇、胡治国、麦小涵、李敏、居家奇,实用新型专利 专利号 ZL202120526328.2(授权公告日::2021年10月26日);中国发明专利 申请号 202110272460.X(申请日:2021年3月12日)
[8] “照明模组和灯具”
戴奇、林畅、胡治国,实用新型专利 专利号 ZL202121463167.3(授权公告日::2021年12月24日);中国发明专利 申请号 202110731185.3(申请日:2021年06月29日)
[9] “一种微型分光测量装置”
戴奇、李敏、黄滢滢、李九慧、麦小涵、居家奇,实用新型专利 专利号 ZL202220715638.3(授权公告日:2021年06月24日);中国发明专利 申请号 202210326257.0(申请日:2022年03月29日)
[10] “光源模组和灯具”
戴奇、胡治国,实用新型专利 专利号 ZL202221176651.2(授权公告日:2022年09月14日);中国发明专利 申请号202210493591.5(申请日:2022年05月07日)
[11] "Techniques for lumen maintenance and color shift compensation"
M. Li, Q. Dai, K. Chen, 美国发明专利 US 9335210(授权日期2016年5月)
[12] "Conductor pad for flexible circuits and flexible circuit incorporating the same"
S. Venk, E. A. Picard, Jr., Q. Dai, R. Garner, 美国发明专利 US 9635759 (授权日期 2017年4月)
[13] "Conductor Pads"
S. Venk, E. A. Picard, Jr., Q. Dai, R. Garner, 美国专利 D774,477 (授权日期2016年12月)
[14] “一种照明装置”
郝洛西、林怡、戴奇、崔哲,中国发明专利 ZL201611093239.3(授权日期2018年6月)
[15] “显示屏健康性能评估方法与装置”
姚其、戴奇,中国发明专利ZL201910339632.3(授权日期2021年6月1日)
3. 专利申请
[16] “参数获取方法、图像处理方法和系统、设备及存储介质”
戴奇、卢成娅,中国发明专利 申请号 02311851922.9(申请日:2023年12月28日)
[17] “发光单元及其设计方法、显示装置、介质、和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202211282134.8(申请日:2022年10月19日)
[18] “发光装置及其设计方法、介质、显示装置和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202210399101.5(申请日:2022年04月16日)
[19] “照明模组和灯具”
林畅、戴奇、朱子厚,中国发明专利 申请号 202111155574.2(申请日:2021年09月30日)
[20] “显示数据转换方法及转换模块、介质、装置和电子设备”
戴奇、赵晓杰,中国发明专利 申请号 202111111018.5(申请日:2021年9月18日)
[21] “一种用于测量一般照度和EML照度的照度计”
居家奇,徐挺,金妍,麦长,戴奇,中国发明专利 申请号202110083319.5(申请日:2021年1月21日)
[22] “一种基于移动设备的成像亮度计”
居家奇,王玥,金妍,戴奇,麦长,中国发明专利,中国发明专利 申请号202120997576.5(申请日:2021年5月11日)
4. 标准
[1] 团体标准:《中小学校教室照明质量分级评价》,T/SIEATA 000001-2020(首次发布)/T-SIEATA 000001-2024(第一次修订),上海照明电器行业协会发布,第一起草人
[2] 国家标准:《读写作业台灯性能要求》,GB/T 9473-2022,全部替代标准:GB/T 9473-2017,全国照明电器标准化技术委员会
[3] 地方标准:《城市景观照明技术规范》,DB31T 316-2023,上海市市场监督管理局发布